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Abstract

We put forth an analysis of causation. The analysis centers on the
notion of a causal model that provides only partial information as to
which events occur, but complete information about the dependences
between the events. The basic idea is this: an event c causes another
event e just in case there is a causal model uninformative on c and e in
which c makes a difference as to the occurrence of e. We show that our
analysis captures more causal scenarios than the other counterfactual
accounts to date.

1 Introduction

Lewis thinks of causes as difference makers. Whether or not a cause occurs
makes a difference as to whether or not its effect occurs. He thus aimed
to analyse causation in terms of counterfactual dependence.! An event e
counterfactually depends on another event c if and only if (iff), had ¢ not
occurred, e would not have occurred. On Lewis’s analysis, an occurring
event c is a cause of a distinct occurring event e if e counterfactually de-
pends on c. Among the accounts in the tradition of Lewis, counterfactual
dependence between distinct occurring events is taken to be sufficient for
causation.? The strategy of counterfactual accounts is thus to ask ‘what
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would happen if the putative cause had been absent?” Under this counter-
factual assumption they claim causation if the presumed effect is absent as
well. An event is a cause in virtue of making this difference.

In this paper, we put forth a counterfactual analysis of causation. Here is
the gist: an event c is a cause of another event ¢ just in case both events
occur, and — after taking out the information whether or not c and e occur
— e would not occur if ¢ were not to occur. We will show that the analysis
successfully captures a wide range of causal scenarios, including switches,
preemption, and two scenarios of double prevention. To date, there is no
other counterfactual account that can solve this set of scenarios.

For extant counterfactual accounts, switching scenarios mean trouble. Con-
sider the scenario depicted in Figure 1.
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Figure 1

In this simple switch, neuron f fires. This excites ’s firing, which in turn
excites neuron e to fire. At the same time, f’s firing inhibits the excitation
of [, which would have been excited in case f had not fired. e fires if either
one of | or r fires. In brief, f determines which one of I and r is firing, and
thus acts like a switch. f’s firing makes no difference as to whether or not e
fires. Hence, f should not count as a cause of ¢’s firing — in particular on a
counterfactual account of causation.
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Surprisingly, Lewis’s analysis misclassifies f as a cause of e. He says cau-
sation is the transitive closure of non-backtracking counterfactual depen-
dence between occurring events. A backtracking counterfactual retraces
some past causes from an effect. Now, f,r, and e occur, and both r coun-
terfactually depends on f in a non-backtracking way and e does so on r.
Barring backtracking, if  had not fired, e would not have fired. By the tran-
sitive closure imposed on the one-step causal dependences, Lewis is forced
to say that f is a cause of e.

Progress has been made. More recent counterfactual accounts of causation
have used causal models to capture scenarios that defy Lewis’s analysis.
A causal model (M, V) represents a causal scenario by a set of structural
equations M and a variable assignment V. For the above scenario, M is
given by the structural equations1 = —f, r = f, and e = 1V r. [ fires
iff f does not; r fires iff f does; and e fires iff | or » does. The variable
assignment V may be given by the set { f, —I,r, e}, which indicates that all
neurons except [ fire. In this causal model, we may set the variable f to —f
and propagate forward the changes effected by this intervention. Given
that = f, the structural equations determine that e. Even if f had not fired,
e would have fired nonetheless. Hence, f does not count as a cause of e on
counterfactual accounts, or so it seems.

Most of the extant counterfactual accounts share a strategy. They test for
counterfactual dependence while keeping certain events or variable assign-
ments fixed. Hitchcock, for example, proposes that c is a cause of e relative
to a causal model iff there is an active causal route from c to e in the causal
model.* Now, there is an active route from f over r to e and keeping the
off-path variable I fixed at its actual value induces a counterfactual depen-
dence of e on f. So Hitchcock’s account, like many other accounts, still fails
to solve the switch scenario.?

3Lewis still imposes transitivity on his refined analysis of causation in “Causation as
Influence,” this JOURNAL, XCVII, 4 (April 2000): 182-97. As a result, the refined analysis
is also forced to say that f is a cause of e in the switching scenario.

4See “The Intransitivity of Causation Revealed in Equations and Graphs”.

5Tn fact, all of the counterfactual accounts cited in footnote 2 misclassify f as a cause of e,
except Hall’s account in “Structural Equations and Causation”. However, the latter account
is inadequate for different reasons, as Hitchcock has shown in “Structural Equations and
Causation: Six Counterexamples,” Philosophical Studies, CXLIV (2009): 391-401. Halpern’s
modification of the Halpern and Pearl account in “Causes and Explanations” still cannot
solve the switch scenario; see his Actual Causality (Cambridge, Massachusetts: MIT Press,



We approach the switch scenario in a different way. Our analysis centers
on the notion of a causal model that provides only partial information as
to which events occur, but complete information about the dependences
between the events. To outline the analysis: c is a cause of e relative to a
causal model (M, V) iff

(1) c and e are true in (M, V), and

(2) thereis V' C V such that (M, V') contains no information about c and
e, but in which —e would be true if —c were.

By these conditions, we test whether e counterfactually depends on c in a
causal model that is uninformative on ¢ and uninformative on e. Causation
is thus analysed as uninformative counterfactual dependence.

Why is f’s firing no cause of ¢’s firing in the switch scenario? Well, there is
simply no causal model (M, V') that contains no information about e. Even
if there is no information at all as to which events occur, the information
about the dependences between the events is sufficient for e’s occurrence.
No matter whether f or —f is actual, e occurs according to the structural
equations. Unlike other counterfactual accounts, our analysis thus captures
the difference-making judgment about the switch scenario.

We have solved the switch scenario without invoking a transitive closure
of counterfactual dependences. Likewise, we have no need to keep cer-
tain variable assignments fixed by intervention when testing for counter-
factual dependence. In fact, this strategy common to many counterfactual
accounts employing causal models is at fault for the misclassification of f
as a cause of ¢ in the switch scenario. By contrast, we merely require that
there must be a causal model uninformative on the cause and the effect, in
which the effect counterfactually depends on the cause.

It remains to show that our counterfactual analysis of causation gives the
intuitively correct results for various other causal scenarios. We thus refine
our analysis and apply it to causal scenarios in what follows. In Section 2,
we outline our account of causal models and state a preliminary version of
our analysis. In Section 3, we make the relation between neuron diagrams
and our causal models explicit before we tackle a number of causal scenar-
ios. In Section 4, we deal with symmetric overdetermination and state our
final analysis.

2016) p. 25.



2 A Causal Model Analysis of Causation

Our causal models have two components: a set M of structural equations
and a consistent set V of literals. Where p is a propositional variable, p is
a positive literal and —p a negative literal. p and —p represent the values
p can take. We give literals thus a semantic role. The literals in V denote
which events occur and which do not, that is, which events and absences
are actual. p € V means that the event corresponding to p occurs. —p € V,
by contrast, means that no token event p of the relevant type occurs. Since
the set of literals is consistent, it cannot be that both p and —p are in V.
Arguably, an event cannot both occur and not occur at the same time.

A structural equation denotes whether an event would occur if some other
events were or were not to occur. Where p is a propositional variable and
¢ a propositional formula, we say that

p=¢

is a structural equation. Each logical symbol of ¢ is either a negation, a
disjunction, or a conjunction. ¢ can be seen as a truth function whose ar-
guments represent occurrences and non-occurrences of events. The truth
value of ¢ determines whether p or —p.

In Figure 1, there are arrows from the neurons / and r to the neuron e. The
arrows represents that the value of the propositional variable e is deter-
mined by the values of the propositional variables 1 and r. The specific
structural equation is e = 1V r. This equation encodes four conditionals:
(i) if I and r were actual, e would be; (ii) if [ and —r were actual, e would
be; (iii) if -/ and r were actual, e would be; and finally (iv) if -/ and —r
were actual, —e would be. Structural equations thus describe dependences
between actual and possible token events. For readability, we will repre-
sent causal models in two-layered boxes. The causal model of the switch
scenario, for example, is given by ({l = ~f,r = f,e =1V r}, {f, -l re}).
We will depict such causal models (M, V) in a box, where the upper layer
shows the set M of structural equations and the lower layer the set V of
actual literals. For the switch scenario, we obtain:



1=~f
r="f
e=1Vr
f,—lre

We say that a set V' of literals satisfies a structural equation p = ¢ just in
case both sides of the equation have the same truth value when plugging
in the literals in V. In more formal terms:

Definition 1. V satisfies ¢ and V satisfies p = ¢

Let V be a set of literals that completely specifies which events in the causal
scenario occur. Let v be the truth value assignment to the propositional
variables (of the causal model) that satisfies V. We say that V satisfies a
propositional formula ¢ iff ¢ is true on v. We say that V satisfies a structural
equation p = ¢ iff p and ¢ have the same truth value on v.

In the switch scenario, the actual set of literals satisfies all the structural
equations. By contrast, the set of literals { f, —I,7, me} does not satisfy e =
1V r. When plugging in the literals, the truth values of e and 1V r do not
match. Finally, we say that a set V of literals satisfies a set M of structural
equations iff V satisfies each member of M.

The structural equations and the literals determine which events occur and
which do not occur in a causal model. This determination can be expressed
by a relation of satisfaction between a causal model and a propositional
formula.

Definition 2. (M, V) satisfies ¢

(M, V) satisfies ¢ iff ¢ is true in all complete sets V¢ of literals that extend
V and satisfy M. A set V¢ of literals is complete iff it completely specifies
which events in the causal scenario occur.

If V is complete, this definition boils down to: (M, V) satisfies ¢ iff V satis-
fies ¢, or V does not satisfy M. Provided V is complete, (M, V) satisfies at
least one of ¢ and —¢ for any formula ¢.

Our analysis relies on causal models that contain no information as to
whether or not the presumed cause and the putative effect occur. We say
that a causal model (M, V) is uninformative about a formula ¢ iff (M, V)
satisfies none of ¢ and —¢. Note that (M, V) cannot be uninformative on
any formula if V' is complete.



Consider a causal model (M, V), where M = {e =1V r}. (M, V) is unin-
formative on e for V. = @. There are four complete extensions that satisfy
M. One of these is {—I, =7, —e}. Hence, (M, V) does not satisfy e. Similarly,
(M, V) does not satisfy —e. There is a complete extension of V that satisfies
M but fails to satisfy —e. The set {I,r, e} of literals, for example, but also
the sets {I, -r,e} and {—1I,r,e}. The structural equation constrains the rep-
resented scenario to four possible cases. These cases are expressed by the
complete sets of literals that satisfy M.

Why is (M, V) not uninformative on e for V = {r}? Well, there is no com-
plete extension of V that satisfies the structural equation in M but fails
to satisfy e. There are only two such complete extensions: {I,r,e} and
{=1,r,e}. If r remains in the set V of literals, e is determined independent
of whether or not / occurs.

It remains to introduce interventions. Recall that a structural equation
p = ¢ determines the truth value of the variable p if certain variables q
occurring in ¢ are given truth values by the literals in V. To represent an
intervention that sets p to one of the truth values, we replace the equation
p = ¢ by the corresponding literal p or —p. We implement such interven-
tions by the notion of a submodel. M is a submodel of M relative to a
consistent set I of literals just in case M contains the literals in I and the
structural equations of M for the variables which do not occur in I. In sym-
bols,

M ={(p=¢)eM[pglandp &I}UL

We denote interventions by an operator [-] that takes a model M and a
consistent set I of literals, and returns a submodel. In symbols, M[I| = M.
In the causal model (M, V), where M = {e =1V r}, we may intervene on
the structural equation by {—r}. This yields: M[{—r}] = {-r,e =1V r}.

The above definition of satisfaction applies to causal models and causal
submodels. To be explicit, the definition does not only capture the relation
of a causal model (M, V) satisfying a formula ¢, but also the relation of a
causal submodel (M, V) satisfying such a formula.

We are now in a position to spell out our analysis in a more precise way.
The key idea is as follows: for c to be a cause of e, there must be a causal
model (M, V') that is uninformative about ¢ and e, while intervening by —c¢
determines —e to be true. In more formal terms:



Definition 3. Cause (Preliminary)
Let (M, V) be a causal model such that V satisfies M. c is a cause of e
relative to (M, V) iff

(C1) (M, V) satisfies c and e, and

(C2) there is V' C V such that (M, V') is uninformative on ¢ and e, while
(M[{—c}], V') satisfies —e.

Recall that (M, V') being uninformative on c and e means that (M, V') sat-
isfies none of ¢, ¢, ¢, and —e.

3 Scenarios

In this section, we test our analysis of causation against causal scenarios.
We lay out the structure of causal scenarios by neuron diagrams. “Neu-
ron diagrams earn their keep”, as Paul and Hall write, “by representing a
complex situation clearly and forcefully, allowing the reader to take in at
a glance its central causal characteristics.”® We introduce simple neuron
diagrams for which there is always a corresponding causal model. Our
causal models, however, are not limited to the causal scenarios which can
be expressed in our simple neuron diagrams.

A neuron diagram is a graph-like representation that comes with different
types of arrows and different types of nodes. Any node stands for a neu-
ron, which fires or else does not. The firing of a neuron is visualized by a
gray-shaded node, the non-firing by a white node. For the scenarios to be
considered, we need two types of arrows. Each arrow with a head repre-
sents a stimulatory connection between two neurons, each arrow ending
with a black dot an inhibitory connection. Furthermore, we distinguish be-
tween normal neurons that need just one stimulation for becoming excited
and stubborn neurons that require two stimulations. Normal neurons are
visualized by circles, stubborn neurons by thicker circles. A neuron dia-
gram obeys four rules. First, the temporal order of events is left to right.

®Causation: A User’s Guide (Oxford: Oxford University Press, 2013), p.10. This being
quoted, there are some shortcomings of neuron diagrams. For details, consult Hitchcock,
“What's Wrong with Neuron Diagrams?” in ]J. K. Campbell, M. O'Rourke, and H. Silver-
stein, eds. Causation and Explanation (Cambridge: MIT, 2007), pp. 4-69.



Second, a normal neuron will fire if it is stimulated by at least one and in-
hibited by none. Third, a stubborn neuron will fire if it is stimulated by
at least two and inhibited by none. Fourth, a neuron will not fire if it is
inhibited by at least one.

Typically, neuron diagrams are used to represent events and absences. The
firing of a neuron indicates the occurrence of some event and the non-firing
indicates its non-occurrence. Recall that we analyse causation between to-
ken events relative to a causal model (M, V), where the causal model rep-
resents the causal scenario under consideration. We thus need a correspon-
dence between neuron diagrams and causal models.

Here is a recipe to translate an arbitrary neuron diagram, as detailed here,
into a causal model. Given a neuron diagram, the corresponding causal
model can be constructed in a step-wise fashion:

For each neuron n of the neuron diagram,
(i) assign n a propositional variable p.
(ii) If n fires, add the positive literal p to the set V of literals.
(iii) If n does not fire, add the negative literal —-p to V.

(iv) If n has an incoming arrow, write on the right-hand side of p’s struc-
tural equation a propositional formula ¢ such that ¢ is true iff 1 fires.”

This recipe adds a positive literal p to the set V of literals for each neuron
that fires, and a negative literal —p for each neuron that does not fire. Then
the neuron rules are translated into structural equations. One can thus read
off a neuron diagram its corresponding causal model: if a neuron is shaded

’The structural equations can be explicitly constructed from the rules governing neuron
diagrams. That is, the catch-all condition (iv) can be replaced by the following clauses. (v)
For each stimulatory arrow ending in a normal neuron 7, add disjunctively to the right
side of p’s structural equation the variable that corresponds to the neuron where the arrow
originates. (vi) For each pair of stimulatory arrows ending in a stubborn neuron n, add
disjunctively to the right side of p’s structural equation the conjunction of the two variables
that correspond to the two neurons where the arrows originate. (vii) For each inhibitory ar-
row ending in 1, add conjunctively to the right side of p’s structural equation the negation
of the variable that corresponds to the neuron where the arrow originates. This transla-
tion shows that there is a principled transition from simple neuron diagrams to our causal
models.



gray, p is in the set V of literals of the corresponding causal model; if a
neuron is white, —pisin V.

We add the following feature to neuron diagrams. Dotted nodes represent
neurons about which there is no information as to whether or not they fire.
In more formal terms, if p € V and —p & V, the corresponding neuron will
be dotted. We portray now how our analysis solves the problems posed by
switches, conjunctive causes, early and late preemption, prevention, and
two scenarios of double prevention.

3.1 Switches

Recall the simple switch scenario whose neuron diagram is depicted in Fig-
ure 1. Here is a story that matches the neuron diagram: Flipper is standing
by a switch in the railroad tracks. A train approaches in the distance. She
flips the switch (f) so that the train travels down the right-hand track (r),
instead of the left (/). Since the tracks reconverge up ahead, the train arrives
at its destination all the same (¢).® Flipping the switch is not a (difference-
making) cause of the train’s arrival. By assumption, ‘the train arrives at
its destination all the same” independent of the flipping. And, by contrast
to scenarios of preemption, the lack of a net effect is not due to a backup
process independent of the flipping. Hence, flipping the switch makes no
difference to the train’s arrival.

Our recipe translates the neuron diagram of the switch scenario into the
following causal model (M, V):

1= —f
r=f
e=1Vr
f,olLr,e

Relative to (M, V), f is not a cause of e. The reason is that there exists no
causal model (M, V') uninformative on e. Any complete extension of the
empty set V' of literals that satisfies the structural equations of M contains
e. In fact, there are only two complete extensions that satisfy the structural
equations, viz. the actual {f, -/, 7,e} and the non-actual {—f,[, —=r,e}. The

8The example is taken from Hall’s “Structural Equations and Causation,” p.28.
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structural equations in M determine e no matter what. f makes no differ-
ence as to e.

3.2 Conjunctive Causes

In a scenario of conjunctive causes, an effect occurs only if two causes
obtain. The following neuron diagram depicts a scenario of conjunctive

| ®
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o

The neurons ¢ and 4 fire. Together they bring the stubborn neuron e to fire.
Had one of ¢ and a not fired, e would not have been excited. Hence, the
tiring of both neurons is necessary for e’s excitation.

Our recipe translates the neuron diagram of Figure 2 into the following
causal model (M, V):

e=cAa
c,a,e

Relative to (M, V), c is a cause of e. For this to be seen, consider the follow-
ing causal model (M, V') that is uninformative on c and e.

=cAa

11



Intervening by {—c} yields:

als
e=cAa

This causal model determines —e to be true. In more formal terms,
(M{ﬂc}, V') satisfies —e. Due to the symmetry of the scenario, a is a cause
of e.

3.3 Early Preemption

Preemption scenarios are about backup processes: there is an event c that,
intuitively, causes e. But even if ¢ had not occurred, there is a backup event
a that would have brought about e. The following neuron diagram repre-
sents the canonical structure of early preemption:

e—@
@>@>@

c’s firing excites neuron d, which in turn leads to an excitation of neuron e.
At the same time, ¢’s firing inhibits the excitation of b. Had ¢ not fired, how-
ever, a would have excited b, which in turn would have led to an excitation
of e. The actual cause ¢ preempts the mere potential cause a.

Our recipe translates the neuron diagram of early preemption into the fol-
lowing causal model (M, V):

12



d=c
b=aA-c
e=dVb
c,a,d,—b,e

Relative to (M, V), ¢ is a cause of e. For this to be seen, consider the follow-
ing causal model (M, V') that is uninformative on ¢ and e.

d=c
b=aA-c
e=dVb
—=b

-

d=c
b=aA-c
e=dVb
—=b

This causal model determines —e to be true. In more formal terms,
(M{-q}, V') satisfies —e.

Relative to (M, V), a is not a cause of e. There is no causal model (M, V')
— where V' C V — uninformative on a and e in which intervening by —a
would determine —e. Since the causal model is required to be uninforma-
tive on e, ¢ cannotbe in V'. But then there is the complete set {c, —a,d, —b, e}
of literals extending V' and satisfying the structural equations. In more for-
mal terms, (M (—a}/ V') does not satisfy —e for any V' such that (M, V') is
uninformative on a and e.

13



3.4 Late Preemption

Lewis subdivides preemption into early and late.” Figure 3 in the previ-
ous section depicts the canonical scenario of early preemption. There, the
process started by the backup cause a is cut off before the process started
by the preempting cause c has gone to completion. This means the process
from the mere potential cause a is cut short at b before the effect e occurs. In
scenarios of late preemption, by contrast, the backup process is cut off by
the process of the actual cause running to completion. a is preempted only
because ¢ brought about the effect before a could do so.

Here is a story for late preemption.!? Billy and Suzy are throwing rocks at
a bottle. Suzy throws an instant earlier so that her rock hits the bottle first.
Hence, Suzy’s throw is the genuine cause of the bottle’s shattering. Billy,
however, is also very skilful at throwing rocks. If Suzy had not thrown
her rock, Billy’s rock would have hit the bottle, and thus the bottle would
have shattered an instant later. Billy’s throw is a preempted cause of the
shattering of the bottle. The backup process initiated by Billy’s throw is
cut short only by Suzy’s throw shattering the bottle. Crucially, the backup
process is preempted only because the process starting from Suzy’s throw
runs to completion, and so brings about the shattering of the bottle before
the backup process could do so. Until the bottle shatters there is always a
backup process that would bring about this effect an instant later.!!

Lewis represents late preemption by a neuron diagram similar to the fol-
lowing.!2

9See his “Postcripts to ‘Causation’,” Philosophical Papers, Volume II (New York: Oxford,
1986), pp. 172-213, here p. 200.

10Lewis provides a similar story for late preemption in his “Causation as Influence,”
p-184.

HThe problem posed by late preemption can be solved by fine-grained individuation
conditions for events. According to these conditions, the shattering of the bottle and the
shattering of the bottle an instant later are two different events. By adopting this strat-
egy counterfactual accounts run into the trouble of spurious causation: they identify causal
relations where, intuitively, there are none. See, for instance, Lewis’s “Postscripts to ‘Cau-
sation’,” pp.204-5, and Ch. 3.4.2 of Paul and Hall’s Causation.

12See his “Postscripts to ‘Causation’,” p. 204.
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Figure 4

Suzy throws her rock (c) an instant earlier than Billy does (a). Suzy’s rock
hits the bottle (d), and so the bottle shatters (e). The shattering of the bottle
prevents Billy’s rock from hitting the bottle (—b). The occurrence of the
effect e cuts off the backup process started by a.

Earlier we have said that the temporal order of events in a neuron diagram
is left to right. In Figure 4, however, the bottle shatters first (e) and so pre-
vents that Billy’s rock hits it (—b). In the non-actual scenario, where Suzy
does not throw (—c), Billy’s rock hits the bottle (b) before the bottle shatters
(e). As is usual, the neuron diagram contains information about the actual
and non-actual scenarios. As is unusual, merging the actual and non-actual
scenarios in one neuron diagram violates here the rule of temporal order.
In the actual scenario, —b becomes actual after e occurs; in the non-actual
scenario, b occurs before e does.?

Our recipe translates the neuron diagram of late preemption into the fol-
lowing causal model (M, V):

d=c
b=aA—e
e=dVvb
c,a,d,—b,e

131t is contested whether Lewis’s story of Suzy and Billy is canonical for scenarios of
late preemption. And even if it is, there is no unanimity how to represent late preemption
in neuron diagrams and causal models. Is the deviation from the rule of temporal order
justified? Is the deviation justified when events are individuated in a relatively coarse-
grained way as to their occurrence in time? Is Billy’s rock not hitting the bottle (because
there is no bottle any more) the absence to Billy’s rock hitting the bottle (because Suzy’s
does not)? For discussions and a variety of tentative answers, see Paul, “Problems with
Late Preemption,” Analysis, LVIII (1998): 48-53; Hall, “Structural Equations and Causation”;
Hitchcock, “Prevention, Preemption, and the Principle of Sufficient Reason,” Philosophical
Review, CXVI (2007): 495-532; and Paul and Hall’s Ch. 3.4 of Causation.
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Relative to (M, V), c is a cause of e. For this to be seen, consider the follow-
ing causal model (M, V') that is uninformative on c and e.

d=c
b=aA—e
e=dVb
-b

—C

d=c
b=aA—e
e=dVvb
—b

This causal model determines —e to be true. In more formal terms,
(M-}, V') satisfies —e.

Relative to (M, V), a is not a cause of e. The causal model (M, V') is un-
informative on a and e only for V' = @ or V' = {-b}. Intervening by
{—a} in each of them does not determine —e. For there is the complete
set {c¢,—a,d, b, e} of literals which extends V' and satisfies the structural
equations. Just like in the case of early preemption, there is no causal model
(M, V') —where V' C V — uninformative on a and e in which intervening
by —a would determine —e. In more formal terms, (M;_,, V') does not
satisfy —e.

It should be mentioned that Halpern and Pearl represent the story of Suzy
and Billy by an acyclic causal model.!* Their causal model of late preemp-
tion can be obtained from the above causal model by replacing the equa-
tion for b with b = a A —d. Our analysis delivers the desired results for
this causal model as well. To sum up, our analysis solves late preemption
— with respect to both Lewis’s and Halpern and Pearl’s representation of
the scenario. Moreover, our analysis solves early and late preemption in a
uniform manner.

14Gee their “Causes and Explanations,” pp. 861-3.
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3.5 Prevention

To prepare ourselves for a discussion of double prevention, let us take a
look at simple prevention first. The basic scenario of prevention can be
represented by the following neuron diagram:

©
\@
@/

Neuron c fires and thereby inhibits that neuron e gets excited. e would have
been excited by d if the inhibitory signal from ¢ were absent. But as it is, c
prevents e from firing. That is, c causes —e by prevention.

Our recipe translates the neuron diagram of prevention into the following
causal model (M, V):

e=-cAd
c,d,—e

Relative to (M, V), ¢ is a cause of —e. For this to be seen, consider the
following causal model (M, V') that is uninformative on c and e.

e=-cAd

Intervening by {—c} yields:
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—C
e=-cAd

This causal model determines e to be true. In more formal terms,
(M-}, V') satisfies e. Moreover, d is not a cause of —e relative to (M, V).
Any causal model (M, V') uninformative on d and e must be uninforma-
tive on c as well. Intervening by —d in (M, V') determines —e, and so does
not determine e.

3.6 Double Prevention

Double prevention can be characterized as follows. c is said to double pre-
vent e if c prevents an event that, had it occurred, would have prevented e.
In other words, ¢ double prevents e if c cancels a threat for e’s occurrence.
The characteristic structure of double prevention can be represented by the
following neuron diagram:

@—0—©

®—

@

Figure 6

c’s firing prevents d’s firing, which would have prevented e’s firing. The
example of double prevention exhibits a counterfactual dependence: given
that b fires, e’s firing counterfactually depends on c’s firing. If ¢ did not fire,
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d would fire, and thereby prevent e from firing. Hence, ¢’s firing double
prevents ¢’s firing in Figure 6. In other terms, ¢’s firing cancels a threat for
e’s firing, viz. the threat originating from b’s firing.

Our recipe translates the neuron diagram of double prevention into the
following causal model (M, V):

d=bA-c
e—=aA—-d
a,b,c,—d, e

Relative to (M, V), ¢ is a cause of e. For this to be seen, consider the follow-
ing causal model (M, V') that is uninformative on c and e.

@—0

d=bA-c
@—> e=aA~-d
a,b
Intervening by {—c} yields:
O>—O
-c
d=bA-c
e=aA—-d
a,b
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This causal model determines d and so —e to be true. In more formal terms,
(M-}, V') satisfies —e.

3.7 Extended Double Prevention

A challenge to many counterfactual accounts of causation is an extension
of the double prevention scenario depicted in Figure 6.1° The extended
version fits the structure of the following neuron diagram:

@—0—0—©0
O—
o

Figure 7 extends Figure 6 by neuron d, which figures as a common cause of
b and c. d starts a process via b that threatens to prevent e. At the same time,
d initiates another process via c that prevents the threat. d cancels its own
threat — the threat via b — to prevent e. In the example of the previous sec-
tion, the threat originated independent of its preventer. Here, by contrast,
d creates and cancels the threat to prevent e. This difference is sufficient
for d not to be a cause of e.!® Observe that the structure characteristic of
double prevention is embedded in Figure 7. The firing of neuron c inhibits
f’s firing that, had it fired, would have inhibited e’s firing. Nonetheless,
this scenario of double prevention exhibits an important difference to its
relative of the previous section: e does not counterfactually depend on d. If
d had not fired, e would still have fired.

15This challenge has been presented in Hall’s “Two Concepts of Causation,” p. 247.
160r so argue Paul and Hall in Causation, p. 216.
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Here is a story that matches the structure of the scenario.l” A hiker is on a
beautiful hike (a). A boulder is dislodged (d) and rolls toward the hiker (b).
The hiker sees the boulder coming and ducks (c) so that he does not get hit
by the boulder (—f). If the hiker had not ducked, the boulder would have
hit him, in which case the hiker would not have continued the hike. Since,
however, he was clever enough to duck, the hiker continues the hike (e).

Hall calls the subgraph d — b — c — f a short circuit with respect to e: the
boulder threatens to prevent the continuation of the hike, but provokes
an action that prevents this threat from being effective.!® Like switching
scenarios, the scenario seems to show that there are cases where causation
is not transitive: the dislodged boulder (d) produces the ducking of the
hiker (c), which in turn enables the hiker to continue the hike (¢). But it
is counterintuitive to say that the dislodging of the boulder (d) causes the
continuation of the hike (e). After all, the dislodgement of the boulder has
no net effect on the continuation of the hike and, by contrast to scenarios
of preemption, there is no backup process in place — independent of the
dislodged boulder — that would bring about the continuation of the hike
anyways.

Our recipe translates the neuron diagram of the boulder scenario into the
following causal model (M, V):

b=d
c=d
f=bA-c
e=aAN~f
a,d,b,c,~f,e

Relative to (M, V), d is not a cause of e. The reason is that the causal model
(M, V') is only uninformative on d and e for V' = @. But (M4, V")
does not satisfy —e for V' = @. In words, the causal model (M, V') is
uninformative about d and e only if the set of literals is empty. But then
intervening by —d does not make —e true.

Note that a is necessary for determining e. If we were to keep a in the liter-
als, the model would not be uninformative. There is no complete extension

17 A similar story is presented in Hitchcock’s “The Intransitivity of Causation Revealed in
Equations and Graphs,” p.276.
184Gtructural Equations and Causation,” p. 36.
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of V! = {a} that satisfies all the structural equations of M but fails to satisfy
e. Observe the similarity of the short circuit c — b — d — f to the switching
scenario in Figure 1. There, f does not make a difference as to e. Here, d
does not make a difference as to f. Rather d defuses its own effects.

4 Symmetric Overdetermination and Final Analysis

Our preliminary analysis cannot solve the scenario of symmetric overde-
termination. Such scenarios are commonly represented by the following

neuron diagram:
@\
J—
@
Figure 8

Here is a story that fits the structure of overdetermination. A prisoner is
shot by two soldiers at the same time (c and a), and each of the bullets is fa-
tal without any temporal precedence. Arguably, both shots should qualify
as causes of the death of the prisoner (e).

Our recipe translates the neuron diagram of Figure 8 into the following
causal model (M, V):

e=cVa

c,ae

The scenario of overdetermination differs from the scenario of conjunctive
causes only in the structural equation for e. While the structural equation
is “‘conjunctive” in the scenario of conjunctive causes, here the equation is
‘disjunctive’. The occurrence of one of the events, c or g, is sufficient for e
to occur. But this means that each of ¢ and a4 individually do not make a
difference to e. Had ¢ not fired, e would have fired nonetheless.
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If ¢ is not a difference maker as to ¢, should ¢ count as a cause of ¢? If not,
our preliminary analysis gives the right result. (M, V') is uninformative
on e only for V' = @. Intervening by —c¢ does not determine —e. After all,
there is the complete set {—c,a, e} of literals which satisfies the disjunctive
structural equation.

But what caused the death of the prisoner? It seems as if we do not want
to say that the death is uncaused. There is rather some agreement that
each of the soldiers caused the death of the prisoner. We account for this
intuition as follows: c is a cause of e because the factor comprising ¢ and
a makes a difference as to e. Each member of such a factor needs to be
negated in order to make a difference as to the effect under consideration.
In formal terms, {—c, ~a} determines —e. On this picture, a cause is a part
of a difference-making factor. In what follows, C’ stands for a difference-
making factor and —C’ for the set containing all the negated elements of
C'.

To state our final analysis of causation, we lift the restriction of cause and
effect to single literals. A candidate for a cause is a set C of literals, a candi-
date for an effect an arbitrary Boolean formula e. Where C is a set of literals,
A\ C stands for the conjunction of all literals in C.

Definition 4. Cause
Let (M, V) be a causal model such that V satisfies M. C is a cause of ¢
relative to (M, V) iff there is a superset C’ of C such that

(C1) (M, V) satisfies \ C A ¢, and

(C2) (i) there is V' C V such that (M, V') is uninformative on C’ and ¢ and
(M (-C'y/ V') satisfies —¢, while

(ii) for all C” C C’, there isno V" C V such that (M, V") is uninfor-
mative on C" and e and (M _cry, V") satisfies —e. 19

Let us explain condition (C2). The basic idea is still that a cause makes a
difference to an effect in a causal model uninformative on the cause and
the effect. (A causal model is uninformative on C’ iff it is uninformative on
each member of C’.) A cause is now understood as a part of a difference-
making factor C'. In fact, the first condition of (C2) simply demands that a

191f one wants cause and effect to be distinct, one should amend the definition by a clause
like this: no element of C’ occurs in e.
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genuine cause C is a subset of some difference-making factor C’. The sec-
ond condition of (C2) ensures that the difference-making factor C’ is mini-
mal relative to the effect and the causal model uninformative on this effect:
all strict subsets C” of C’ do not make a difference as to whether the effect
is actual. This minimality condition excludes causally non-relevant events
from being causes.

Our final analysis solves the scenario of symmetric overdetermination. Rel-
ative to (M, V), C = {c} is a cause of e. For (i) there is a factor C' = {c,a}
which makes a difference with respect to the effect e relative to the causal
model (M, @), which is uninformative on each proposition occurring in C’
and e. And (ii) there is no strict subset of C’ that makes a difference as to
e relative to (M, @). Due to the symmetry of the scenario, 4 is a cause of e.
(Moreover, the set {c,a} counts as a cause of e.)

Symmetric overdetermination has troubled counterfactual accounts since
Lewis’s first analysis. Each of the overdetermining causes individually
does not make any difference to the occurrence of the effect. Indeed, our
analysis can capture overdetermination only by shifting the focus on the
parts of a minimal difference-making factor. On the positive side, we are
not aware of any other analysis of causation which captures overdetermi-
nation, conjunctive causes, early and late preemption, switches, preven-
tion, double prevention, and extended double prevention.

5 Conclusion

We have put forth an analysis of causation. In essence, c is a cause of e just
in case ¢ and e are actual, and there is a causal model uninformative on ¢
and e in which ¢ makes a difference as to e. Our final analysis successfully
captures various causal scenarios, including overdetermination, preemp-
tion, switches, and extended double prevention. The competing counter-
factual accounts of causation fail to capture — to the best of our knowledge —
at least two of the causal scenarios considered. With respect to this set, our
analysis is strictly more comprehensive than other counterfactual accounts.

The following table compares the results of our analysis (DMC) to the
counterfactual accounts of Lewis (£'73), Hitchcock (Hitch’01), Halpern and
Pearl (HP’05), and Halpern (H'16).
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Causes of e or —e L’73 | Hitch’01 | HP’05 | H'16 DMC
Overdetermination - c,a c,a {c,a} | c,a,{c,a}
Conjunctive Causes c,a c,a c,a c,a c,a
Early Preemption c c c c c
Switch f f f f -
Prevention c c c c c
Double Prevention c c c c c

E. Double Prevention d d d d -

We think our results are what a notion of difference-making causation
should deliver.
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